Please wait a minute...
文章检索
预防医学  2025, Vol. 37 Issue (3): 307-311    DOI: 10.19485/j.cnki.issn2096-5087.2025.03.021
  妇幼保健 本期目录 | 过刊浏览 | 高级检索 |
儿童期肥胖与2型糖尿病、冠心病的孟德尔随机化研究
陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 方益荣
绍兴市疾病预防控制中心,浙江 绍兴 312000
Association among childhood obesity, type 2 diabetes mellitus and coronary artery heart disease: a Mendelian randomization study
CHEN Haimiao, MA Yan, LIU Mingqi, MA Shanshan, LI Jun, FANG Yirong
Shaoxing Center for Disease Control and Prevention, Shaoxing, Zhejiang 312000, China
全文: PDF(869 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目的 探究儿童期肥胖与2型糖尿病(T2DM)、冠心病(CHD)的因果关联。方法 儿童期肥胖的全基因组关联研究(GWAS)数据来自ECG汇总的2~18岁儿童资料(18 613名病例和12 696名对照),T2DM的GWAS数据来自DIAGRAM汇总的资料(242 283名病例和1 569 734名对照),CHD的GWAS数据来自CARDIoGRAMplusC4D汇总的资料(10 801名病例和137 371名对照。采用MAGMA、PLACO和条件错误发现率(cFDR)方法分析与T2DM、CHD均相关的多效性基因;采用逆方差加权法(IVW)进行孟德尔随机化(MR)分析,探究儿童期肥胖、T2DM和CHD的因果关联;采用Cochran Q检验评估异质性;采用MR-Egger回归法检验水平多效性;采用MR-PRESSO检验去除离群值。进一步采用中介分析探究三者中的中介变量。结果 MAGMA、PLACO和cFDR分析结果显示,与T2DM、CHD均相关的多效性基因有80个,主要分布于3号、17号和19号染色体。MR分析结果显示,儿童期肥胖增加T2DM(OR=1.151,95%CI:1.033~1.283)、CHD(OR=1.158,95%CI:1.068~1.255)的发病风险;T2DM增加CHD的发病风险(OR=1.182,95%CI:1.139~1.227),CHD也增加T2DM的发病风险(OR=1.124,95%CI:1.055~1.198)。MR-Egger回归法未发现水平多效性,MR-PRESSO检验未发现离群值(均P>0.05)。中介分析结果显示,儿童期肥胖可直接正向影响CHD(效应值=0.096,95%CI:0.012~0.180),也可通过T2DM间接正向影响CHD(效应值=0.023,95%CI:0.005~0.041),中介效应占总效应的15.65%。结论 儿童期肥胖与T2DM、CHD存在因果关联,T2DM与CHD互为因果关联;T2DM在儿童期肥胖与CHD间发挥中介作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈海苗
马岩
刘明奇
马珊珊
李军
方益荣
关键词 肥胖2型糖尿病冠心病孟德尔随机化中介分析    
AbstractObjective To investigate the association between childhood obesity and type 2 diabetes mellitus (T2DM) as well as coronary artery heart disease (CHD). Methods Genome-wide association study (GWAS) data for childhood obesity were collected from the ECG consortium, encompassing information on children aged 2 to 18 years, including 18 613 cases and 12 696 controls. GWAS data for T2DM were collected from the DIAGRAM consortium, including 242 283 cases and 1 569 734 controls. GWAS data for CHD were collected from the CARDIoGRAMplusC4D consortium, including 10 801 cases and 137 371 controls. Pleiotropic genes associated with both T2DM and CHD were analyzed using the MAGMA, PLACO and conditional false discovery rate (cFDR) methods. Mendelian randomization (MR) analysis was performed using inverse variance weighted (IVW) method, exploring the causal relationships among childhood obesity, T2DM and CHD. Heterogeneity was evaluated using Cochran's Q test, horizontal pleiotropy and exclude outliers were tested using MR-Egger regression and MR-PRESSO test. The mediating variables among the three diseases were investigated by using a mediation analysis. Results The results of MAGMA, PLACO and cFDR analyses identified 80 pleiotropic genes associated with both T2DM and CHD, primarily distributed on chromosomes 3, 17 and 19. The MR analysis revealed that childhood obesity increased the risk of T2DM (OR=1.151, 95%CI: 1.033-1.283) and CHD (OR=1.158, 95%CI: 1.068-1.255), T2DM increased the risk of CHD (OR=1.182, 95%CI: 1.139-1.227), and CHD increased the risk of T2DM (OR=1.124, 95%CI: 1.055-1.198). The MR-Egger regression analysis showed no horizontal pleiotropy, and the MR-PRESSO test did not identify any outliers (all P>0.05). Mediation analysis indicated that childhood obesity directly increased the risk of CHD (effect value=0.096, 95%CI: 0.012-0.180) and indirectly increased the risk of CHD through T2DM (effect value=0.023, 95%CI: 0.005-0.041), with the mediation effect accounting for 15.65% of the total effect. Conclusions There are potential causal associations between childhood obesity and T2DM as well as CHD, with a bidirectional causal relationship between T2DM and CHD. T2DM also plays a mediating role in the association between childhood obesity and CHD.
Key wordsobesity    type 2 diabetes mellitus    coronary artery heart disease    Mendelian randomization    mediation analysis
收稿日期: 2024-12-18      修回日期: 2025-01-20      出版日期: 2025-03-10
中图分类号:  R723.14  
作者简介: 陈海苗,硕士,医师,主要从事传染病防控工作
通信作者: 方益荣,E-mail:fyr2015@126.com   
引用本文:   
陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 方益荣. 儿童期肥胖与2型糖尿病、冠心病的孟德尔随机化研究[J]. 预防医学, 2025, 37(3): 307-311.
CHEN Haimiao, MA Yan, LIU Mingqi, MA Shanshan, LI Jun, FANG Yirong. Association among childhood obesity, type 2 diabetes mellitus and coronary artery heart disease: a Mendelian randomization study. Preventive Medicine, 2025, 37(3): 307-311.
链接本文:  
http://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2025.03.021      或      http://www.zjyfyxzz.com/CN/Y2025/V37/I3/307
[1] MUNIR M,ZAKARIA Z A,NISAR H,et al.Global human obesity and global social index:relationship and clustering[J].Front Nutr,2023,10:1-11.
[2] SIMMONDS M,LLEWELLYN A,OWEN C G,et al.Predicting adult obesity from childhood obesity:a systematic review and meta-analysis[J].Obes Rev,2016,17(2):95-107.
[3] BENDOR C D,BARDUGO A,PINHAS-HAMIEL O,et al.Cardiovascular morbidity,diabetes and cancer risk among children and adolescents with severe obesity[J].Cardiovasc Diabetol,2020,19(1):1-14.
[4] SHEN M,XIE Q Y,ZHANG R Z,et al.Metabolite-assisted models improve risk prediction of coronary heart disease in patients with diabetes[J].Front Pharmacol,2023,14:1-9.
[5] SUZUKI K,HATZIKOTOULAS K,SOUTHAM L,et al.Genetic drivers of heterogeneity in type 2 diabetes pathophysiology[J].Nature,2024,627(8003):347-357.
[6] NELSON C P,GOEL A,BUTTERWORTH A S,et al.Association analyses based on false discovery rate implicate new loci for coronary artery disease[J].Nat Genet,2017,49(9):1385-1391.
[7] VISSCHER P M,WRAY N R,ZHANG Q,et al.10 years of GWAS discovery:biology,function,and translation[J].Am J Hum Genet,2017,101(1):5-22.
[8] BRADFIELD J P,VOGELEZANG S,FELIX J F,et al.A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity[J].Hum Mol Genet,2019,28(19):3327-3338.
[9] LAWLOR D A,HARBORD R M,STERNE J A C,et al.Mendelian randomization:using genes as instruments for making causal inferences in epidemiology[J].Stat Med,2008,27(8):1133-1163.
[10] DE LEEUW C A,MOOIJ J M,HESKES T,et al.MAGMA:generalized gene-set analysis of GWAS data[J].PLoS Comput Biol,2015,11(4):1-19.
[11] ANDREASSEN O A,DJUROVIC S,THOMPSON W K,et al.Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors[J].Am J Hum Genet,2013,92(2):197-209.
[12] RAY D,CHATTERJEE N.A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate cancer[J].PLoS Genet,2020,16(12):1-25.
[13] HARTWIG F P,DAVEY SMITH G,BOWDEN J.Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption[J].Int J Epidemiol,2017,46(6):1985-1998.
[14] SANDERSON E,DAVEY SMITH G,WINDMEIJER F,et al.An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings[J].Int J Epidemiol,2019,48(3):713-727.
[15] BJERREGAARD L G,JENSEN B W,ÄNGQUIST L,et al.Change in overweight from childhood to early adulthood and risk of type 2 diabetes[J].N Engl J Med,2018,378(26):2537-2538.
[16] SINAIKO A R,DONAHUE R P,JACOBS JR D R,et al.Relation of weight and rate of increase in weight during childhood and adolescence to body size,blood pressure,fasting insulin,and lipids in young adults:the Minneapolis Children's Blood Pressure Study[J].Circulation,1999,99(11):1471-1476.
[17] GENG T,SMITH C E,LI C W,et al.Childhood BMI and adult type 2 diabetes,coronary artery diseases,chronic kidney disease,and cardiometabolic traits:a Mendelian randomization analysis[J].Diabetes Care,2018,41(5):1089-1096.
[18] JEPPESEN J,HANSEN T W,RASMUSSEN S,et al.Insulin resistance,the metabolic syndrome,and risk of incident cardiovascular disease:a population-based study[J].J Am Coll Cardiol,2007,49(21):2112-2119.
[19] ANDREOZZI F,GASTALDELLI A,MANNINO G C,et al.Increased carotid intima-media thickness in the physiologic range is associated with impaired postprandial glucose metabolism,insulin resistance and beta cell dysfunction[J].Atherosclerosis,2013,229(2):277-281.
[20] WU H Z,BALLANTYNE C M.Metabolic inflammation and insulin resistance in obesity[J].Circ Res,2020,126(11):1549-1564.
[21] WOLF R M,JAFFE A E,RODRIGUEZ S,et al.Altered adipokines in obese adolescents:a cross-sectional and longitudinal analysis across the spectrum of glycemia[J].Am J Physiol Endocrinol Metab,2021,320(6):1044-1052.
[1] 江南, 唐晓敏, 孙文韬. 膳食模式与中小学生超重肥胖的关联研究[J]. 预防医学, 2025, 37(3): 228-232.
[2] 孙霞, 但玲英, 郑鹏, 陈薪伊. 2型糖尿病患者脂肪因子与糖尿病视网膜病变的关联研究[J]. 预防医学, 2025, 37(3): 248-252.
[3] 陈海苗, 马岩, 刘明奇, 马珊珊, 李军, 徐来潮. 膳食成分与肠道微生物的孟德尔随机化研究[J]. 预防医学, 2025, 37(1): 73-76,81.
[4] 王英杰, 孙高峰, 赵娥, 田原. 2017—2021年乌鲁木齐市2型糖尿病患者管理指标分析[J]. 预防医学, 2025, 37(1): 92-95.
[5] 陈颖, 刘可, 刘彬, 孙晓慧, 何志兴, 毛盈颖, 叶丁. 肠道菌群与多囊卵巢综合征的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 801-805.
[6] 崔彦泽, 张玲, 蒋璐, 李慧敏, 王硕. 衰弱与2型糖尿病的孟德尔随机化研究[J]. 预防医学, 2024, 36(9): 786-789.
[7] 郑帅印, 李丽丹, 陈佩弟, 谢尔瓦妮古丽·阿卜力米提, 李砥. 2型糖尿病合并非酒精性脂肪肝的预测模型研究[J]. 预防医学, 2024, 36(9): 741-745,749.
[8] 周国营, 邢丽丽, 苏颖, 刘宏杰, 刘赫, 王迪, 薛锦峰, 戴威, 汪静, 杨兴华. 2007—2022年东城区心血管疾病发病趋势[J]. 预防医学, 2024, 36(9): 813-816.
[9] 李欢, 张敬红, 余丹, 金文舒, 倪少梅, 吴天凤. 老年2型糖尿病患者血清维生素D与甲状腺功能指标的关联分析[J]. 预防医学, 2024, 36(8): 702-705.
[10] 宋文富, 关徐涛, 王冰, 孙士玲, 李盈盈. 炎症因子与乳腺癌关系的孟德尔随机化研究[J]. 预防医学, 2024, 36(8): 714-717,722.
[11] 陈蓉, 莫口妈妮, 柯晓鸿, 王楚怀. 白细胞端粒长度与白内障的双向孟德尔随机化研究[J]. 预防医学, 2024, 36(7): 580-583.
[12] 白勇, 李萍, 姜楠. 肥胖、外周血血脂指标与非小细胞肺癌的孟德尔随机化研究[J]. 预防医学, 2024, 36(6): 518-522.
[13] 刘伟, 林泉, 范宗静, 崔杰, 吴旸. 食物与动脉粥样硬化的孟德尔随机化研究[J]. 预防医学, 2024, 36(6): 483-486,490.
[14] 李煜楠, 徐鹏程, 贾俊亚, 闫铁昆. 体质指数与25种自身免疫性疾病的孟德尔随机化研究[J]. 预防医学, 2024, 36(5): 388-392.
[15] 黄钦海, 余石群, 陈小敏, 曾煜球. 云浮市中小学生营养不良状况调查[J]. 预防医学, 2024, 36(5): 402-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed