Please wait a minute...
文章检索
预防医学  2023, Vol. 35 Issue (10): 866-870    DOI: 10.19485/j.cnki.issn2096-5087.2023.10.008
  综述 本期目录 | 过刊浏览 | 高级检索 |
肿瘤微环境对肿瘤细胞上皮-间质转化的多重作用研究进展
李壮, 周欣悦, 刘夏阳 综述, 郭晓红 审校
湖北中医药大学基础医学院,湖北 武汉 430072
Multiple roles of tumor microenvironment in epithelial-mesenchymal transition of tumor cells:a review
LI Zhuang, ZHOU Xinyue, LIU Xiayang, GUO Xiaohong
School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430072, China
全文: PDF(760 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 肿瘤细胞的转移为肿瘤治疗带来了巨大的困难。肿瘤微环境是肿瘤发展所处的复杂而丰富的多细胞环境,其中肿瘤相关的免疫细胞会诱导肿瘤细胞发生上皮-间质转化(EMT),增强肿瘤细胞的侵袭性和运动性,促使肿瘤细胞转移,而经历EMT的肿瘤细胞又会分泌细胞因子等物质,重组肿瘤微环境。EMT和肿瘤微环境之间互相作用,加重肿瘤的侵袭和转移。本文收集2015—2023年有关肿瘤微环境与肿瘤细胞EMT的研究文献,就肿瘤微环境对肿瘤EMT的作用进行综述,为肿瘤转移机制研究和抗肿瘤药物研发提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李壮
周欣悦
刘夏阳
郭晓红
关键词 肿瘤微环境上皮-间质转化肿瘤转移    
Abstract:Metastasis of tumor cells poses great difficulties for tumor therapy. Tumor microenvironment is a complex and rich multicellular environment for the development of tumors, in which tumor-associated immune cells induce tumor cells to undergo epithelial-mesenchymal transition (EMT) which enhances the invasiveness and motility of tumor cells and prompts tumor cells to metastasize, and tumor cells undergoing EMT secrete cytokines and other substances to reorganize the tumor microenvironment. The interaction between EMT and the tumor microenvironment aggravate tumor invasion and metastasis. This paper collects research literature on tumor microenvironment and EMT of tumor cells from 2015 to 2023, and reviews the role of tumor microenvironment in tumor EMT, providing the basis for research into tumor metastasis mechanism and development of anti-tumor drugs.
Key wordstumor microenvironment    epithelial-mesenchymal transition    tumor    metastasis
收稿日期: 2023-06-29      修回日期: 2023-09-08      出版日期: 2023-10-10
中图分类号:  R73  
基金资助:国家自然科学基金项目(82174020)
作者简介: 李壮,硕士研究生在读
通信作者: 郭晓红,E-mail:Judyguo313@hbtcm.edu.cn   
引用本文:   
李壮, 周欣悦, 刘夏阳, 郭晓红. 肿瘤微环境对肿瘤细胞上皮-间质转化的多重作用研究进展[J]. 预防医学, 2023, 35(10): 866-870.
LI Zhuang, ZHOU Xinyue, LIU Xiayang, GUO Xiaohong. Multiple roles of tumor microenvironment in epithelial-mesenchymal transition of tumor cells:a review. Preventive Medicine, 2023, 35(10): 866-870.
链接本文:  
https://www.zjyfyxzz.com/CN/10.19485/j.cnki.issn2096-5087.2023.10.008      或      https://www.zjyfyxzz.com/CN/Y2023/V35/I10/866
[1] BEJARANO L,JORDĀO M J C,JOYCE J A.Therapeutic targeting of the tumor microenvironment[J].Cancer Discov,2021,11(4):933-959.
[2] YEUNG K T,YANG J.Epithelial-mesenchymal transition in tumor metastasis[J].Mol Oncol,2017,11(1):28-39.
[3] MA T T,MENG X M.TGF-β/Smad and renal fibrosis[J].Adv Exp Med Biol,2019(1165):347-364.
[4] ERIN N,GRAHOVAC J,BROZOVIC A,et al.Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance[J/OL].Drug Resist Updat,2020,53[2023-09-08].https://doi.org/10.1016/j.drup.2020.100715.
[5] HUANG Y H,HONG W Q,WEI X W.The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis[J].J Hematol Oncol,2022,15(1):1-27.
[6] ECKERT M A,LWIN T M,CHANG A T,et al.Twist1-induced invadopodia formation promotes tumor metastasis[J].Cancer Cell,2011,19(3):372-386.
[7] LEONG H S,ROBERTSON A E,STOLETOV K,et al.Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis[J].Cell Rep,2014,8(5):1558-1570.
[8] GARG M.Epithelial-mesenchymal transition-activating transcription factors-multifunctional regulators in cancer[J].World J Stem Cells,2013,5(4):188-195.
[9] ROMANO M,FANELLI G,ALBANY C J,et al.Past,present,and future of regulatory T cell therapy in transplantation and autoimmunity[J/OL].Front Immunol,2019,10[2023-09-08].https://doi.org/10.3389/fimmu.2019.00043.
[10] LIU J H,LI C X,ZHANG L Y,et al.Association of tumour-associated macrophages with cancer cell EMT,invasion,and metastasis of Kazakh oesophageal squamous cell cancer[J].Diagn Pathol,2019,14(1):1-9.
[11] WEI C,YANG C G,WANG S Y,et al.Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis[J].Mol Cancer,2019,18(1):1-23.
[12] JIANG Y,HAN Q J,ZHAO H J,et al.Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis[J].J Exp Clin Cancer Res,2021,40(1):1-18.
[13] YANG C G,DOU R Z,WEI C,et al.Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype TAM interaction to facilitate CRC metastasis[J].Mol Ther,2021,29(6):2088-2107.
[14] RIABOV V,GUDIMA A,WANG N,et al.Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis[J/OL].Front Physiol,2014,5[2023-09-08].https://doi.org/10.3389/fphys.2014.00075.
[15] WANG Y H,LI X,ZHANG T C,et al.Neutrophils promote tumor invasion via FAM3C-mediated epithelial-to-mesenchymal transition in gastric cancer[J].Int J Biol Sci,2023,19(5):1352-1368.
[16] LI S,CONG X L,GAO H Y,et al.Tumor-associated neutrophils induce EMT by IL-17a to promote migration and invasion in gastric cancer cells[J/OL].J Exp Clin Cancer Res,2019,38[2023-09-08].https://doi.org/10.1186/s13046-018-1003-0.
[17] HU X Y,XIANG F G,FENG Y Y,et al.Neutrophils promote tumor progression in oral squamous cell carcinoma by regulating EMT and JAK2/STAT3 signaling through chemerin[J/OL].Front Oncol,2022,12[2023-09-08].https://doi.org/10.3389/fonc.2022.812044.
[18] TAKI M,ABIKO K,UKITA M,et al.Tumor immune microenvironment during epithelial-mesenchymal transition[J].Clin Cancer Res,2021,27(17):4669-4679.
[19] GOULET C R,CHAMPAGNE A,BERNARD G,et al.Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling[J/OL].BMC Cancer,2019,19[2023-09-08].https://doi.org/10.1186/s12885-019-5353-6.
[20] WANG H B,WEI H,WANG J S,et al.MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer[J].Mol Ther-Nucl Acids,2020,19:654-667.
[21] HU J L,WANG W,LAN X L,et al.CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer[J/OL].Mol Cancer,2019,18[2023-09-08].https://doi.org/10.1186/s12943-019-1019-x.
[22] CHAE Y K,CHANG S,KO T,et al.Epithelial-mesenchymal transition(EMT)signature is inversely associated with T-cell infiltration in non-small cell lung cancer(NSCLC)[J/OL].Sci Rep,2018,8[2023-09-08].https://doi.org/10.1038/s41598-018-21061-1.
[23] XIE F,ZHOU X Y,SU P,et al.Breast cancer cell-derived extracellular vesicles promote CD8+T cell exhaustion via TGF-β type II receptor signaling[J/OL].Nat Commun,2022,13(1)[2023-09-08].https://doi.org/10.1038/s41467-022-31250-2.
[24] GOEBEL L,GRAGE-GRIEBENOW E,GORYS A,et al.CD4+T cells potently induce epithelial-mesenchymal-transition in premalignant and malignant pancreatic ductal epithelial cells-novel implications of CD4+T cells in pancreatic cancer development[J/OL].Oncoimmunology,2015,4(4)[2023-09-08].http://dx.doi.org/10.1080/2162402X.2014.1000083.
[25] GARCÍA-CUELLAR C M,SANTIBÁÑEZ-ANDRADE M,CHIRINO Y I,et al.Particulate matter(PM10)promotes cell invasion through epithelial-mesenchymal transition(EMT)by TGF-β activation in A549 lung cells[J/OL].Int J Mol Sci,2021,22(23)[2023-09-08].https://doi.org/10.3390/ijms222312632.
[26] LI Y X,WANG P,YE D M,et al.IGHG1 induces EMT in gastric cancer cells by regulating TGF-β/Smad3 signaling pathway[J].J Cancer,2021,12(12):3458-3467.
[27] WANG G,ZHOU X W,GUO Z L,et al.The anti-fibrosis drug pirfenidone modifies the immunosuppressive tumor microenvironment and prevents the progression of renal cell carcinoma by inhibiting tumor autocrine TGF-β[J].Cancer Biol Ther,2022,23(1):150-162.
[28] HUANG M L,FU M R,WANG J,et al.TGF-β1-activated cancer-associated fibroblasts promote breast cancer invasion,metastasis and epithelial-mesenchymal transition by autophagy or overexpression of FAP-α[J/OL].Biochem Pharmacol,2021,188[2023-09-08].https://doi.org/10.1016/j.bcp.2021.114527.
[29] OSHIMORI N,ORISTIAN D,FUCHS E.TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma[J].Cell,2015,160(5):963-976.
[30] CHEN L,LIN G X,CHEN K H,et al.VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma[J].J Cancer,2020,11(24):7291-7301.
[31] YANG Y L,CAO Y H.The impact of VEGF on cancer metastasis and systemic disease[J].Semin Cancer Biol,2022,86:251-261.
[32] CHEN Y,ZHANG L,LIU W X,et al.VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer[J/OL].Cell Mol Biol Lett,2018,23[2023-09-08].https://doi.org/10.1186/s11658-017-0058-9.
[33] LIU L,YE Y,ZHU X M.MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway[J/OL].Biomed Pharmacother,2019,117[2023-09-08].https://doi.org/10.1016/j.biopha.2019.109096.
[34] WU H T,LIN J,LIU Y E,et al.Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway[J/OL].Phytomedicine,2021,81[2023-09-08].https://doi.org/10.1016/j.phymed.2020.153437.
[35] HWANG K E,KIM H J,SONG I S,et al.Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer[J].Int J Med Sci,2021,18(3):715-726.
[1] 王曼怡, 吴菁菁, 李晓珊, 张慧茹, 黄智凯, 曾谷清. 不同年龄分组的骨密度与原发性恶性骨肿瘤的孟德尔随机化研究[J]. 预防医学, 2025, 37(6): 612-615.
[2] 蒋舒頔, 郭婷, 凌军军, 任婕, 张亮. 初次性行为年龄与妇科恶性肿瘤的孟德尔随机化研究[J]. 预防医学, 2025, 37(5): 516-520.
[3] 赵琳, 蒋龙艳, 徐斌, 唐咸艳. 南宁市五种主要恶性肿瘤发病率分析[J]. 预防医学, 2025, 37(2): 135-138.
[4] 李晓珊, 王曼怡, 张慧茹, 王顺桃, 刘新月, 曾谷清. 氨基酸与原发性恶性骨肿瘤的孟德尔随机化研究[J]. 预防医学, 2025, 37(12): 1252-1256.
[5] 杜灵彬, 邱雨, 李辉章, 李润华, 朱陈, 王乐, 裘燕飞. 2021年浙江省肿瘤登记地区恶性肿瘤发病和死亡特征分析[J]. 预防医学, 2025, 37(10): 973-978.
[6] 韩仁强, 缪伟刚, 俞浩, 陶然, 周金意. 2009—2021年江苏省肿瘤登记地区恶性肿瘤发病趋势及年龄变化分析[J]. 预防医学, 2025, 37(10): 979-984,990.
[7] 成姝雯, 董婷, 张新, 李尤, 季奎, 李元琼, 袁芝佩. 2021年四川省肿瘤登记地区恶性肿瘤发病和死亡特征分析[J]. 预防医学, 2025, 37(10): 1002-1008.
[8] 顾思萌, 李雅晖, 王晓峰, 莫哲. MAGI2-AS3在肿瘤发生发展中的调控机制研究进展[J]. 预防医学, 2024, 36(7): 594-597.
[9] 叶振淼, 樊丽辉, 郑宇航, 张默涵, 姜雪霞, 罗永园, 谢轶敏, 金茜, 李慧君. 2014—2022年温州市肝癌死亡趋势分析[J]. 预防医学, 2024, 36(5): 393-396.
[10] 吴丹红, 王伟霞, 王良友, 乔冬菊, 黄依璐, 张嫣. 台州市4类慢性病死亡及早死概率分析[J]. 预防医学, 2024, 36(5): 428-431,436.
[11] 高菡璐, 俞晓芳, 吕乐彬, 叶国良, 樊金卿. 多靶点粪便DNA、肠道菌群、癌胚抗原及水果摄入对结直肠癌风险的交互作用研究[J]. 预防医学, 2024, 36(3): 219-223.
[12] 汪怡倩, 王临池, 黄春妍, 崔俊鹏, 陆艳. 2003—2022年苏州市膀胱癌死亡趋势与减寿分析[J]. 预防医学, 2024, 36(1): 9-12.
[13] 赵祺玮, 周欣悦, 刘夏阳, 李壮, 郭晓红. 缺氧诱导因子对肿瘤间质细胞影响的研究进展[J]. 预防医学, 2024, 36(1): 34-38.
[14] 赵芳芳, 林君英, 王冬飞, 李玉荣, 高媛媛, 蒋园园. 萧山区恶性肿瘤死亡趋势分析[J]. 预防医学, 2024, 36(1): 78-81, 85.
[15] 李玉荣, 汪芬娟, 王冬飞, 林君英, 蒋园园, 高媛媛, 赵芳芳. 2015—2020年萧山区恶性肿瘤发病趋势分析[J]. 预防医学, 2023, 35(8): 687-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed